5 MEX

Eva Hudec^{1,2}
Nikolaos Kalafatakis¹
Roberto Cerbino¹

The Rheologists'
Dream

Multi-scale study of the yielding transition!

Coupling traditional rheology with optical microscopy!

Rheo-microscopy of Soft Materials

Carbopol 974P in propylene glycol seeded with 2.0 μm polystyrene particles 20x CMOS Particle tracking trigger box deflection signal

MACRO scale

- Transparent parallel plate geometry
- Type III behavior in the LAOS regime (loss modulus G' overshoot)
- Yield point around 40% strain

MESO scale

- Assesment of possible shear instabilities like wall slip and shear banding
- Direct measurement of the deformation profile (left)
 - -> Consistent between different sample loadings (marker shape)
- Calculation of the local strain (right)

MICRO scale

- Echo protocol to assess the non-affine displacements

- Mean square displacement in the vorticity direction (orthogonal to shear)
- Master curve constructed by horizontal shifting (right)
- Yield point around 46% strain

Contact: hudec10e@gmail.com

1 Computational and Soft Matter Physics, Factulty of Physics, University of Vienna

Department of Physics, Faculty of Science, University of Zagreb

