NON-UNIVERSALITY OF JAMMING IN CELLULAR MONOLAYERS

J. Di Franco^{1,2}, F. Krautgasser¹, C. Mazzella³, F. Giavazzi⁴, G. Scita^{3,5}, R. Cerbino¹

¹Computational and Soft Matter Physicis, Faculty of Physics, University of Vienna Doctoral School in Physics ³IFOM, Milan, Italy ⁴Department of Medical Biotechnology and Translational Medicine, University of Milan ⁵Department of Oncology and Haemato-Oncology, University of Milan

WHAT IS JAMMING?

Cellular jamming refers to how tissues switch between liquid and solid-like states

 Crucial in understanding developmental processes and disease progression

OPEN GAP

Real space techniques, e.g PIV and tracking, are limited:

- cell shape variability
- user dependent
- unreliable for diffusive dynamics

OUR GOAL

Reciprocal space techniques have probed phase transitions in inert matter but not in cellular tissues. We use Differential Dynamic **Microscopy**^{a,b} (DDM) to reveal universal features across cell types.

THE TWO PATHWAYS OF JAMMING

Jamming via gradual slowdown

Jamming via motility transition

e.g. NIH-3T3 / Mouse fibroblasts

e.g. HaCaT / Human keratinocytes

FINGERPRINT OF TISSUE DYNAMICS

MONOLAYER AGING AFFECTS ITS DYNAMICS

- Relaxation rate declines with monolayer age, displaying a difference of one order of magnitude between the two cell lines.
- All investigated systems initially exhibit initial ballistic-like motion, but their paths to arrest vary.
- Dynamic differences arise not only between epithelial and mesenchymal cell types but also among cell lines within the same type.

Cellular Jamming is not governed by a universal set of physical rules.

DDM in pictures

Image Structure Function

$$D\left(q,\Delta t
ight) = \langle |\Delta I\left(q,t,\Delta t
ight)|^2
angle_t$$

D(q, Δt)

A(q)

Static signal amplitude

B(q) Camera noise

$$ISF\left(q,\Delta t
ight)=1-rac{D(q,\Delta t)-B(q)}{A(q)}$$

The Intermediate Scattering Function

(ISF) measures correlation of particles positions for lagtimes Δt , at a spatial frequency given by q

$$ISF\left(q,\Delta t
ight)=(1-lpha)e^{\left(-(\Gamma(q)\Delta t)^{eta}
ight)}$$

 Δt (s)

Relaxation rate

6

 $\Gamma\left(q
ight)=vq^{k}$

v monolayer activity k dynamical exponent

To know more about us:

References

^aCerbino & Trappe, *Phys. Rev. Lett.,* 2008

^bLattuada et al., *arXiv*, 2025

Acknowledgements

